Normal view MARC view

Multivariate concave and convex stochastic dominance

Author: Denuit, Michel ; Eeckhoudt, Louis ; Tsetlin, Ilia ; Winkler, Robert L.INSEAD Area: Decision Sciences Series: Working Paper ; 2010/29/DS Publisher: Fontainebleau : INSEAD, 2010.Language: EnglishDescription: 24 p.Type of document: INSEAD Working Paper Online Access: Click here Abstract: Stochastic dominance permits a partial ordering of alternatives (probability distributions on consequences) based only on partial information about a decision maker’s utility function. Univariate stochastic dominance has been widely studied and applied, with general agreement on classes of utility functions for dominance of different degrees. Extensions to the multivariate case have received less attention and have used different classes of utility functions, some of which require strong assumptions about utility. We investigate multivariate stochastic dominance using a class of utility functions that is consistent with a basic preference assumption, can be related to well-known characteristics of utility, and is a natural extension of the stochastic order typically used in the univariate case. These utility functions are multivariate risk averse, and reversing the preference assumption allows us to investigate stochastic dominance for utility functions that are multivariate risk seeking. We provide insights into these two contrasting forms of stochastic dominance, develop some criteria to compare probability distributions (hence alternatives) via multivariate stochastic dominance, and illustrate how this dominance could be used in practice to identify inferior alternatives. Connections between our approach and dominance using different stochastic orders are also discussed.
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
INSEAD Working Paper Digital Library
PDF Available BC009088
Total holds: 0

Stochastic dominance permits a partial ordering of alternatives (probability distributions on consequences) based only on partial information about a decision maker’s utility function. Univariate stochastic dominance has been widely studied and applied, with general agreement on classes of utility functions for dominance of different degrees. Extensions to the multivariate case have received less attention and have used different classes of utility functions, some of which require strong assumptions about utility. We investigate multivariate stochastic dominance using a class of utility functions that is consistent with a basic preference assumption, can be related to well-known characteristics of utility, and is a natural extension of the stochastic order typically used in the univariate case. These utility functions are multivariate risk averse, and reversing the preference assumption allows us to investigate stochastic dominance for utility functions that are multivariate risk seeking. We provide insights into these two contrasting forms of stochastic dominance, develop some criteria to compare probability distributions (hence alternatives) via multivariate stochastic dominance, and illustrate how this dominance could be used in practice to identify inferior alternatives. Connections between our approach and dominance using different stochastic orders are also discussed.

Digitized

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?