Normal view MARC view

Handbook of statistical distributions with applications

Author: Krishnamoorthy, K. Series: Statistics: textbooks and monographs ; 188 Publisher: Chapman and Hall, 2006.Language: EnglishDescription: 346 p. : Graphs ; 24 cm. includes CD-ROM / DVDISBN: 9781584886358Type of document: BookBibliography/Index: Includes bibliographical references and indexContents Note: CD available inside back cover
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA273 .K75 2006
(Browse shelf)
001254174
Available 001254174
Total holds: 0

Includes bibliographical references and index

CD available inside back cover

Digitized

Handbook of Statistical Distributions with Applications Contents INTRODUCTION TO STATCALC 0.1 Introduction...............................................................................................1 0.2 Contents of StatCalc................................................................................... 4 1 PRELIMINARIES 1.1 Random Variables and Expectations......................................................... 9 1.2 Moments and Other Functions.................................................................. 12 1.2.1 Measures of Central Tendency....................................................... 12 1.2.2 Moments....................................................................................... 12 1.2.3 Measures of Variability.................................................................. 13 1.2.4 Measures of Relative Standing....................................................... 14 1.2.5 Other Measures ............................................................................ 14 1.2.6 Some Other Functions................................................................... 15 1.3 Some Functions Relevant to Reliability ..................................................... 15 1.4 Model Fitting ............................................................................................ 16 1.4.1 Q--Q Plot...................................................................................... 17 1.4.2 The Chi-Square Goodness-of-Fit Test.............................................17 1.5 Methods of Estimation.............................................................................. 18 1.5.1 Moment Estimation....................................................................... 18 1.5.2 Maximum Likelihood Estimation................................................... 19 1.6 Inference .................................................................................................. 19 1.6.1 Hypothesis Testing ....................................................................... 19 1.6.2 Interval Estimation........................................................................ 23 1.7 Random Number Generation .................................................................... 24 1.8 Some Special Functions............................................................................ 25 2 DISCRETE UNIFORM DISTRIBUTION 2.1 Description.............................................................................................. 29 2.2 Moments ................................................................................................ 30 3 BINOMIAL DISTRIBUTION 3.1 3.2 3.3 3.4 Description.............................................................................................. 31 Moments................................................................................................. 32 Computing Table Values.......................................................................... 34 Test for the Proportion............................................................................. 36 3.4.1 An Exact Test.............................................................................. 36 3.4.2 Power of the Exact Test................................................................ 36 3.5 Confidence Intervals for the Proportion.................................................... 38 3.5.1 An Exact Confidence Interval....................................................... 38 3.5.2 Computing Exact Limits and Sample Size Calculation ................. 39 3.6 A Test for the Difference between Two Proportions................................... 40 3.6.1 An Unconditional Test................................................................ 40 3.6.2 Power of the Unconditional Test.................................................. 41 3.7 Fisher's Exact Test.................................................................................. 42 3.7.1 Calculation of p-Values............................................................... 43 3.7.2 Exact Powers.............................................................................. 44 3.8 Properties and Results............................................................................. 45 3.8.1 Properties................................................................................... 45 3.8.2 Relation to Other Distributions................................................... 45 3.8.3 Approximations ......................................................................... 46 3.9 Random Number Generation .................................................................. 46 3.10 Computation of Probabilities ................................................................. 48 4 HYPERGEOMETRIC DISTRIBUTION 4.1 4.2 4.3 4.4 4.5 Description.............................................................................................. 51 Moments................................................................................................. 52 Computing Table Values.......................................................................... 54 Point Estimation...................................................................................... 56 Test for the Proportion............................................................................. 57 4.5.1 An Exact Test............................................................................. 57 4.5.2 Power of the Exact Test............................................................... 58 4.6 Confidence Intervals and Sample Size Calculation................................... 59 4.6.1 Confidence Intervals................................................................... 59 4.6.2 Sample Size for Precision............................................................ 60 4.7 A Test for the Difference between Two Proportions....................................62 4.7.1 The Test ..................................................................................... 62 4.7.2 Power Calculation....................................................................... 63 4.8 Properties and Results............................................................................. 64 4.8.1 Recurrence Relations.................................................................. 64 4.8.2 Relation to Other Distributions................................................... 64 4.8.3 Approximations........................................................................... 64 4.9 Random Number Generation.................................................................... 65 4.10 Computation of Probabilities ................................................................. 66 5 POISSON DISTRIBUTION 5.1 Description.............................................................................................. 71 5.2 Moments.................................................................................................. 72 5.3 Computing Table Values.......................................................................... 74 5.4 Point Estimation...................................................................................... 75 5.5 Test for the Mean..................................................................................... 75 5.5.1 An Exact Test..............................................................................75 5.5.2 Powers of the Exact Test ............................................................ 76 5.6 Confidence Intervals for the Mean............................................................ 77 5.6.1 An Exact Confidence Interval...................................................... 77 5.6.2 Sample Size Calculation for Precision.......................................... 78 5.7 Test for the Ratio of Two Means............................................................... 78 5.7.1 A Conditional Test.......................................................................78 5.7.2 Powers of the Conditional Test ................................................... 80 5.8 Confidence Intervals for the Ratio of Two Means....................................... 81 5.9 A Test for the Difference between Two Means........................................... 81 5.9.1 An Unconditional Test................................................................. 82 5.9.2 Powers of the Unconditional Test.................................................83 5.10 Model Fitting with Examples.................................................................. 84 5.11 Properties and Results........................................................................... 86 5.11.1 Properties................................................................................. 86 5.11.2 Relation to Other Distributions................................................. 86 5.11.3 Approximations ........................................................................ 87 5.12 Random Number Generation.................................................................. 87 5.13 Computation of Probabilities.................................................................. 88 6 GEOMETRIC DISTRIBUTION 6.1 6.2 6.3 6.4 6.5 Description.............................................................................................. 93 Moments................................................................................................. 94 Computing Table Values.......................................................................... 94 Properties and Results............................................................................. 95 Random Number Generation....................................................................96 7 NEGATIVE BINOMIAL DISTRIBUTION 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Description.............................................................................................. 97 Moments................................................................................................. 98 Computing Table Values.......................................................................... 100 Point Estimation...................................................................................... 101 A Test for the Proportion ......................................................................... 101 Confidence Intervals for the Proportion.................................................... 103 Properties and Results............................................................................. 103 7.7.1 Properties................................................................................... 103 7.7.2 Relation to Other Distributions................................................... 104 7.8 Random Number Generation....................................................................104 7.9 A Computational Method for Probabilities................................................ 106 8 LOGARITHMIC SERIES DISTRIBUTION 8.1 8.2 8.3 8.4 Description.............................................................................................. 107 Moments................................................................................................. 109 Computing Table Values.......................................................................... 109 Inferences ............................................................................................... 112 8.4.1 Point Estimation......................................................................... 112 8.4.2 Interval Estimation..................................................................... 112 8.5 Properties and Results............................................................................. 113 8.6 Random Number Generation....................................................................113 8.7 A Computational Algorithm for Probabilities ............................................ 114 9 UNIFORM DISTRIBUTION 9.1 Description.............................................................................................. 115 9.2 Moments................................................................................................. 116 9.3 Inferences ............................................................................................... 116 9.4 Properties and Results........................................................................... 117 9.5 Random Number Generation................................................................. 117 10 NORMAL DISTRIBUTION 10.1 10.2 10.3 10.4 Description.......................................................................................... 119 Moments............................................................................................. 123 Computing Table Values...................................................................... 123 One-Sample Inference.......................................................................... 127 10.4.1 Point Estimation.................................................................... 127 10.4.2 Test for the Mean and Power Computation.............................128 10.4.3 Interval Estimation for the Mean............................................130 10.4.4 Test and Interval Estimation for the Variance........................ 132 10.5 Two-Sample Inference.......................................................................... 134 10.5.1 Inference for the Ratio of Variances........................................135 10.5.2 Inference for the Difference between Two Means when the Variances Are Equal............................................. 136 10.5.3 Inference for the Difference between Two Means ................... 140 10.6 Tolerance Intervals.............................................................................. 142 10.6.1 Two-Sided Tolerance Intervals............................................... 142 10.6.2 One-Sided Tolerance Limits................................................... 143 10.6.3 Equal-Tail Tolerance Intervals .............................................. 145 10.6.4 Simultaneous Hypothesis Testing for Quantiles..................... 146 10.6.5 Tolerance Limits for One-Way Random Effects Model............. 147 10.7 Properties and Results ........................................................................ 149 10.8 Relation to Other Distributions............................................................ 150 10.9 Random Number Generation............................................................... 151 10.10 Computing the Distribution Function................................................ 152 11 CHI-SQUARE DISTRIBUTION 11.1 11.2 11.3 11.4 11.5 Description.......................................................................................... 155 Moments............................................................................................. 156 Computing Table Values ..................................................................... 157 Applications........................................................................................ 157 Properties and Results ........................................................................ 158 11.5.1 Properties.............................................................................. 158 11.5.2 Relation to Other Distributions.............................................. 159 11.5.3 Approximations..................................................................... 160 11.6 Random Number Generation............................................................... 161 11.7 Computing the Distribution Function.................................................. 161 12 F DISTRIBUTION 12.1 Description.......................................................................................... 163 12.2 Moments.............................................................................................. 165 12.3 Computing Table Values...................................................................... 165 12.4 Properties and Results......................................................................... 166 12.4.1 Identities............................................................................... 166 12.4.2 Relation to Other Distributions.............................................. 166 12.4.3 Series Expansions.................................................................. 167 12.4.4 Approximations .....................................................................168 12.5 Random Number Generation................................................................ 168 12.6 A Computational Method for Probabilities ............................................169 13 STUDENT'S t DISTRIBUTION 13.1 Description.......................................................................................... 171 13.2 Moments.............................................................................................. 172 13.3 Computing Table Values...................................................................... 173 13.4 Distribution of the Maximum of Several Variables ............................... 173 13.4.1 An Application....................................................................... 174 13.4.2 Computing Table Values........................................................ 175 13.4.3 An Example........................................................................... 175 13.5 Properties and Results ........................................................................ 176 13.5.1 Properties.............................................................................. 176 13.5.2 Relation to Other Distributions.............................................. 176 13.5.3 Series Expansions for Cumulative Probability.........................177 13.5.4 An Approximation.................................................................. 178 13.6 Random Number Generation................................................................ 178 13.7 A Computational Method for Probabilities ............................................178 14 EXPONENTIAL DISTRIBUTION 14.1 Description.......................................................................................... 179 14.2 Moments.............................................................................................. 180 14.3 Computing Table Values...................................................................... 180 14.4 Inferences............................................................................................ 181 14.5 Properties and Results ........................................................................ 182 14.5.1 Properties.............................................................................. 182 14.5.2 Relation to Other Distributions.............................................. 182 14.6 Random Number Generation................................................................ 183 15 GAMMA DISTRIBUTION 15.1 15.2 15.3 15.4 15.5 Description.......................................................................................... 185 Moments.............................................................................................. 186 Computing Table Values ......................................................................187 Applications with Some Examples........................................................ 188 Inferences............................................................................................ 189 15.5.1 Maximum Likelihood Estimators............................................ 189 15.5.2 Moment Estimators................................................................ 190 15.5.3 Interval Estimation................................................................ 190 15.6 Properties and Results ........................................................................ 191 15.7 Random Number Generation................................................................ 192 15.8 A Computational Method for Probabilities ............................................ 193 16 BETA DISTRIBUTION 16.1 16.2 16.3 16.4 16.5 16.6 Description.......................................................................................... 195 Moments.............................................................................................. 196 Computing Table Values.......................................................................197 Inferences............................................................................................ 198 Applications with an Example.............................................................. 198 Properties and Results ........................................................................ 201 16.6.1 An Identity and Recurrence Relations .................................... 201 16.6.2 Relation to Other Distributions.............................................. 202 16.7 Random Number Generation................................................................ 203 16.8 Evaluating the Distribution Function................................................... 205 17 NONCENTRAL CHI-SQUARE DISTRIBUTION 17.1 17.2 17.3 17.4 17.5 Description.......................................................................................... 207 Moments.............................................................................................. 209 Computing Table Values.......................................................................209 Applications......................................................................................... 210 Properties and Results ........................................................................ 211 17.5.1 Properties.............................................................................. 211 17.5.2 Approximations to Probabilities ............................................. 211 17.5.3 Approximations to Percentiles ............................................... 211 17.6 Random Number Generation................................................................ 212 17.7 Evaluating the Distribution Function................................................... 212 18 NONCENTRAL F DISTRIBUTION 18.1 Description.......................................................................................... 217 18.2 Moments.............................................................................................. 219 18.3 Computing Table Values...................................................................... 219 18.4 Applications......................................................................................... 219 18.5 Properties and Results ........................................................................ 220 18.5.1 Properties............................................................................... 220 18.5.2 Approximations ...................................................................... 221 18.6 Random Number Generation................................................................ 221 18.7 Evaluating the Distribution Function................................................... 222 19 NONCENTRAL t DISTRIBUTION 19.1 Description.......................................................................................... 225 19.2 Moments.............................................................................................. 226 19.3 Computing Table Values ..................................................................... 227 19.4 Applications......................................................................................... 227 19.5 Properties and Results ........................................................................ 228 19.5.1 Properties.............................................................................. 228 19.5.2 An Approximation.................................................................. 229 19.6 Random Number Generation................................................................ 229 19.7 Evaluating the Distribution Function................................................... 229 20 LAPLACE DISTRIBUTION 20.1 Description.......................................................................................... 233 20.2 Moments.............................................................................................. 234 20.3 Computing Table Values...................................................................... 235 20.4 Inferences............................................................................................ 235 20.4.1 Maximum Likelihood Estimators............................................ 235 20.4.2 Interval Estimation................................................................ 236 20.5 Applications......................................................................................... 236 20.6 Relation to Other Distributions............................................................ 238 20.7 Random Number Generation................................................................ 239 21 LOGISTIC DISTRIBUTION 21.1 Description.......................................................................................... 241 21.2 Moments.............................................................................................. 242 21.3 Computing Table Values...................................................................... 243 21.4 Maximum Likelihood Estimators.......................................................... 244 21.5 Applications......................................................................................... 244 21.6 Properties and Results ........................................................................ 245 21.7 Random Number Generation................................................................ 245 22 LOGNORMAL DISTRIBUTION 22.1 Description.......................................................................................... 247 22.2 Moments.............................................................................................. 248 22.3 Computing Table Values...................................................................... 249 22.4 22.5 22.6 22.7 22.8 Maximum Likelihood Estimators.......................................................... 250 Confidence Interval and Test for the Mean............................................ 250 Inferences for the Difference between Two Means................................. 251 Inferences for the Ratio of Two Means.................................................. 253 Applications ........................................................................................ 254 22.9 Properties and Results ........................................................................ 254 22.10 Random Number Generation.............................................................. 255 22.11 Computation of Probabilities and Percentiles ..................................... 255 23 PARETO DISTRIBUTION 23.1 Description.......................................................................................... 257 23.2 Moments.............................................................................................. 258 23.3 Computing Table Values ..................................................................... 259 23.4 Inferences............................................................................................ 259 23.4.1 Point Estimation.................................................................... 260 23.4.2 Interval Estimation................................................................ 260 23.5 Applications......................................................................................... 260 23.6 Properties and Results ........................................................................ 261 23.7 Random Number Generation................................................................ 261 23.8 Computation of Probabilities and Percentiles ....................................... 261 24 WEIBULL DISTRIBUTION 24.1 24.2 24.3 24.4 24.5 24.6 24.7 24.8 Description.......................................................................................... 263 Moments.............................................................................................. 264 Computing Table Values...................................................................... 265 Applications......................................................................................... 265 Point Estimation.................................................................................. 266 Properties and Results ........................................................................ 267 Random Number Generation................................................................ 267 Computation of Probabilities and Percentiles ....................................... 267 25 EXTREME VALUE DISTRIBUTION 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 Description.......................................................................................... 269 Moments.............................................................................................. 270 Computing Table Values...................................................................... 271 Maximum Likelihood Estimators.......................................................... 271 Applications......................................................................................... 272 Properties and Results ........................................................................ 273 Random Number Generation................................................................ 273 Computation of Probabilities and Percentiles........................................ 273 26 CAUCHY DISTRIBUTION 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 Description.......................................................................................... 275 Moments.............................................................................................. 276 Computing Table Values...................................................................... 276 Inference.............................................................................................. 277 26.4.1 Estimation Based on Sample Quantiles ................................. 277 26.4.2 Maximum Likelihood Estimators ........................................... 278 Applications......................................................................................... 278 Properties and Results......................................................................... 278 Random Number Generation................................................................ 279 Computation of Probabilities and Percentiles........................................ 279 27 INVERSE GAUSSIAN DISTRIBUTION 27.1 27.2 27.3 27.4 Description.......................................................................................... 281 Moments............................................................................................. 282 Computing Table Values...................................................................... 283 One-Sample Inference.......................................................................... 283 27.4.1 A Test for the Mean............................................................... 284 27.4.2 Confidence Interval for the Mean........................................... 284 27.5 Two-Sample Inference.......................................................................... 285 27.5.1 Inferences for the Difference between Two Means...................285 27.5.2 Inferences for the Ratio of Two Means.................................... 287 27.6 Random Number Generation............................................................... 287 27.7 Computational Methods for Probabilities and Percentiles .................... 288 28 RAYLEIGH DISTRIBUTION 28.1- Description......................................................................................... 289 28.2 Moments............................................................................................. 290 28.3 Computing Table Values...................................................................... 290 28.4 Maximum Likelihood Estimator........................................................... 291 28.5 Relation to Other Distributions............................................................ 291 28.6 Random Number Generation............................................................... 292 29 BIVARIATE NORMAL DISTRIBUTION 29.1 29.2 29.3 29.4 Description.......................................................................................... 293 Computing Table Values...................................................................... 294 An Example......................................................................................... 295 Inferences on Correlation Coefficients.................................................. 296 29.4.1 Point Estimation.................................................................. 297 29.4.2 Hypothesis Testing .............................................................. 297 29.4.3 Interval Estimation............................................................... 299 29.4.4 Inferences on the Difference between Two Correlation Coefficients..................................................... 301 29.5 Some Properties................................................................................... 303 29.6 Random Number Generation............................................................... 303 29.7 A Computational Algorithm for Probabilities.........................................305 30 DISTRIBUTION OF RUNS 30.1 Description.......................................................................................... 307 30.2 Computing Table Values...................................................................... 309 30.3 Examples............................................................................................. 309 31 SIGN TEST AND CONFIDENCE INTERVAL FOR THE MEDIAN 31.1 31.2 31.3 31.4 Hypothesis Test for the Median............................................................ 311 Confidence Interval for the Median....................................................... 312 Computing Table Values ..................................................................... 312 An Example......................................................................................... 313 32 WILCOXON SIGNED-RANK TEST 32.1 32.2 32.3 32.4 Description ......................................................................................... 315 Moments and an Approximation...........................................................316 Computing Table Values ..................................................................... 317 An Example......................................................................................... 317 33 WILCOXON RANK-SUM TEST 33.1 33.2 33.3 33.4 33.5 Description ......................................................................................... 319 Moments and an Approximation...........................................................320 Mann-Whitney U Statistic ................................................................... 320 Computing Table Values...................................................................... 321 An Example......................................................................................... 321 34 NONPARAMETRIC TOLERANCE INTERVAL 34.1 Description ......................................................................................... 323 34.2 Computing Table Values...................................................................... 324 34.3 An Example......................................................................................... 324 35 TOLERANCE FACTORS FOR A MULTIVARIATE NORMAL POPULATION 35.1 Description........................................................................................... 325 35.2 Computing Tolerance Factors............................................................... 326 35.3 Examples............................................................................................. 326 36 DISTRIBUTION OF THE SAMPLE MULTIPLE CORRELATION COEFFICIENT 36.1 Description .......................................................................................... 329 36.2 Moments.............................................................................................. 330 36.3 Inferences............................................................................................ 330 36.3.1 Point Estimation.....................................................................330 36.3.2 Interval Estimation................................................................. 331 36.3.3 Hypothesis Testing................................................................. 331 36.4 Some Results....................................................................................... 332 36.5 Random Number Generation................................................................ 332 36.6 A Computational Method for Probabilities ............................................ 332 36.7 Computing Table Values....................................................................... 334 REFERENCES................................................................................................... 335 INDEX............................................................................................................... 345

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?