Normal view MARC view

Dynamic general equilibrium modeling

Author: Heer, Burkhard ; Maussner, AlfredPublisher: Springer, 2009.Edition: 2nd ed.Description: 702 p. ; 24 cm.ISBN: 9783540856849Type of document: BookNote: Doriot: for 2012-2013 courses Bibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Asia Campus
Textbook Collection (PhD)
Print HB145 .H44 2009
(Browse shelf)
900203985
Consultation only 900203985
Book Asia Campus
Textbook Collection (PhD)
Print HB145 .H44 2009
(Browse shelf)
900203997
Available 900203997
Book Europe Campus
Main Collection
Print HB145 .H44 2009
(Browse shelf)
32419001197841
Available 32419001197841
Book Europe Campus
Main Collection
Print HB145 .H44 2009
(Browse shelf)
32419001197858
Available 32419001197858
Total holds: 0

Doriot: for 2012-2013 courses

Includes bibliographical references and index

Digitized

Dynamic General Equilibrium Modeling Computational Methods and Applications Table of Contents Preface ........................................................................................... VII List of Figures .......................................................................... XXIII List of Symbols........................................................................ XXVII List of Programs....................................................................... XXIX Part I. Representative Agent Models 1 Basic Models ................................................................................ 3 1.1 The Deterministic Finite-Horizon Ramsey Model and Non-Linear Programming ........................................... 4 1.1.1 The Ramsey Problem ................................................ 4 1.1.2 The Kuhn-Tucker Theorem ...................................... 6 1.2 The Deterministic Infinite-Horizon Ramsey Model and Dynamic Programming ............................................... 9 1.2.1 Recursive Utility ....................................................... 9 1.2.2 Euler Equations........................................................ 11 1.2.3 Dynamic Programming............................................ 13 1.2.4 The Saddle Path ...................................................... 16 1.2.5 Models with Analytic Solution ............................... 21 1.3 The Stochastic Ramsey Model ........................................... 25 1.3.1 Stochastic Output .................................................... 25 1.3.2 Stochastic Euler Equations ..................................... 28 1.3.3 Stochastic Dynamic Programming .......................... 30 1.4 Labor Supply, Growth, and the Decentralized Economy .......................................................................... 33 1.4.1 Substitution of Leisure ............................................ 33 1.4.2 Growth and Restrictions on Technology and Preferences ............................................................ 34 1.4.3 The Decentralized Economy .................................... 40 1.5 Model Calibration and Evaluation ........................................ 44 1.5.1 The Benchmark Model.............................................. 44 1.5.2 Calibration ................................................................ 46 1.5.3 Model Evaluation ...................................................... 51 1.6 Numerical Solution Methods ............................................... 59 1.6.1 Characterization ........................................................ 59 1.6.2 Accuracy of Solutions ................................................ 61 Appendices ................................................................................ 65 A.1 Solution to Example 1.2.1 ................................................... 65 A.2 Restrictions on Technology and Preferences ....................... 67 Problems .................................................................................... 72 2 Perturbation Methods ................................................................. 75 2.1 Linear Solutions for Deterministic Models .......................... 77 2.2 The. Stochastic Linear Quadratic Model .............................. 84 2.3 LQ Approximation................................................................ 89 2.3.1 A Warning ................................................................. 89 2.3.2 An Illustrative Example............................................. 91 2.3.3 The General Method.................................................. 95 2.4 Linear Approximation .......................................................... 98 2.4.1 An Illustrative Example............................................. 99 2.4.2 The General Method................................................ 106 2.5 Quadratic Approximation .................................................. 114 2.5.1 Introduction ............................................................. 114 2.5.2 The Deterministic Growth Model ............................ 116 2.5.3 The Stochastic Growth Model ................................. 118 2.5.4 Generalization ......................................................... 124 2.6 Applications ....................................................................... 131 2:6.1 The Benchmark Model ............................................ 131 2.6.2 Time to Build .......................................................... 138 2.6.3 New Keynesian Phillips Curve ............................... 143 Appendices .............................................................................. 158 A.3 Solution of the Stochastic LQ Problem .............................. 158 A.4 Derivation of the Log-Linear Model of the New Keynesian Phillips Curve ................................................ 160 Problems .................................................................................. 169 3 Deterministic Extended Path .................................................... 175 3.1 Solution of Deterministic Models........................................ 176 3.1.1 Finite-Horizon Models ............................................ 176 3.1.2 Infinite-Horizon Models .......................................... 179 3.2 Solution of Stochastic Models............................................. 181 3.2.1 An Illustrative Example........................................... 182 3.2.2 The Algorithm in General ....................................... 184 3.3 Further Applications ........................................................... 186 3.3.1 The Benchmark Model............................................. 186 3.3.2 A Small Open Economy........................................... 189 Problems .................................................................................. 200 4 Discrete State Space Methods.................................................... 207 4.1 Solution of Deterministic Models........................................ 208 4.2 Solution of Stochastic Models............................................. 221 4.3 Further Applications ........................................................... 232 4.3.1 Non-Negative Investment........................................ 232 4.3.2 The Benchmark Model............................................. 235 Problems ................................................................................... 238 5 Parameterized Expectations......................................................... 243 5.1 Characterization of Approximate Solutions ....................... 244 5.1.1 An Illustrative Example........................................... 244 5.1.2 A General Framework.............................................. 247 5.1.3 Adaptive Learning.................................................... 249 5.2 Computation of the Approximate Solution ........................ 252 5.2.1 Choice of T and W .................................................... 252 5.2.2 Iterative Computation of the Fixed Point ................ 254 5.2.3 Direct Computation of the Fixed Point.................... 255 5.2.4 Starting Points.......................................................... 257 5.3 Applications ........................................................................ 259 5.3.1 Stochastic Growth with Non-Negative Investment ............................................................. 259 5.3.2 The Benchmark Model............................................. 265 5.3.3 Limited Participation Model of Money ................... 268 Problems .................................................................................. 281 6 Projection Methods.................................................................... 285 6.1 Characterization of Projection Methods............................. 286 6.1.1 An Example.............................................................. 286 6.1.2 The General Framework.......................................... 289 6.1.3 Relation to Parameterized Expectations ................. 291 6.2 The Building Blocks of Projection Methods ...................... 293 6.2.1 Approximating Function ......................................... 293 6.2.2 Residual Function ................................................... 294 6.2.3 Projection and Solution ........................................... 295 6.2.4 Accuracy of Solution............................................... 297 6.3 Applications ........................................................................ 297 6.3.1 The Deterministic Growth Model............................ 298 6.3.2 The Stochastic Growth Model with Non-Negative Investment...................................... 302 6.3.3 The Benchmark Model............................................. 309 6.3.4 The Equity Premium Puzzle ................................... 311 Problems .................................................................................. 324 Part II. Heterogeneous Agent Models 7 Computation of Stationary Distributions................................ 329 7.1 A Simple Heterogeneous-Agent Model with Aggregate Certainty.......................................................... 331 7.2 The Stationary Equilibrium of a Heterogeneous-Agent Economy ...................................... 338 7.3 Applications ........................................................................ 359 7.3.1 The Risk-Free Rate in Economies with Heterogeneous Agents and Incomplete Insurance .............................................................. 359 7.3.2 Heterogeneous Productivity and Income Distribution ........................................................... 367 Problems .................................................................................. 384 8 Dynamics of the Distribution Function.................................... 389 8.1 Introduction ........................................................................ 390 8.2 Transition Dynamics .......................................................... 393 8.2.1 Partial Information................................................... 395 8.2.2 Guessing a Finite Time Path for the Factor Prices...................................................................... 406 8.3 Aggregate Uncertainty........................................................ 411 8.4 Applications ........................................................................ 421 8.4.1 Costs of Business Cycles with Liquidity Constraints and Indivisibilities .............................. 422 8.4.2 Business Cycle Dynamics of the Income Distribution ........................................................... 431 8.5 Epilogue............................................................................... 446 Problems .................................................................................. 449 9 Deterministic Overlapping Generations Models ........................ 9.1 The Steady State ................................................................. 9.1.1 An Illustrative Example........................................... 9.1.2 Computation of the Steady State ............................ 9.2 The Transition Path............................................................. 9.2.1 A Stylized 6-Period Model...................................... 9.2.2 Computation of the Transition Path ........................ 9.3 Application: The Demographic Transition ........................ 9.3.1 The Model ............................................................... 9.3.2 Computation ............................................................ 9.3.3 Results ..................................................................... Problems .................................................................................. 451 453 454 458 469 471 473 482 483 489 499 502 10 Stochastic Overlapping Generations Models......................... 507 10.1 Individual Uncertainty....................................................... 507 10.2 Aggregate Uncertainty...................................................... 520 10.2.1 Log-Linearization ................................................. 522 10.2.2 The Algorithm of Krusell and Smith in Overlapping Generations Models ......................... 533 Appendix.................................................................................. 549 A.5 Parameters of the AR(1)-Process with Annual Periods .............................................................................. 549 Problems .................................................................................. 551 Part III. Tools 11 Numerical Methods.................................................................. 555 11.1 A Quick Refresher in Linear Algebra .............................. 555 11.1.1 Complex Numbers................................................. 555 11.1.2 Vectors .................................................................. 557 11.1.3 Norms .................................................................... 558 11.1.4 Linear Independence.............................................. 558 11.1.5 Matrices ................................................................. 558 11.1.6 Linear and Quadratic Forms ................................. 563 11.1.7 Eigenvalues and Eigenvectors .............................. 564 11.1.8 Matrix Factorization.............................................. 565 11.1.9 Givens Rotation..................................................... 570 11.2 Function Approximation .................................................. 570 11.2.1 Taylor's Theorem .................................................. 571 11.2.2 Implicit Function Theorem ................................... 574 11.2.3 Linear Interpolation .............................................. 575 11.2.4 Cubic Splines ........................................................ 577 11.2.5 Families of Polynomials ....................................... 578 11.2.6 Chebyshev Polynomials ........................................ 581 11.2.7 Multidimensional Approximation ......................... 588 11.2.8 Neural Networks ................................................... 591 11.3 Numerical Differentiation and Integration ....................... 593 11.3.1 Differentiation ....................................................... 593 11.3.2 Numerical Integration............................................ 598 11.4 Stopping Criteria for Iterative Algorithms ....................... 603 11.5 Non-Linear Equations ...................................................... 606 11.5.1 Single Equations ................................................... 607 11.5.2 Multiple Equations ................................................ 610 11.6 Numerical Optimization ................................................... 622 11.6.1 Golden Section Search .......................................... 623 11.6.2 Gauss-Newton Met ho d........................................ 626 11.6.3 Quasi-Newton ....................................................... 630 11.6.4 Genetic Algorithms................................................ 633 12 Various Other Tools ................................................................ 645 12.1 Difference Equations ........................................................ 645 12.1.1 Linear Difference Equations.................................. 645 12.1.2 Non-Linear Difference Equations ......................... 648 12.2 Markov Processes ............................................................. 651 12.3 DM-Statistic ...................................................................... 658 12.4 The HP-Filter .................................................................... 663 References ...................................................................................... 667 Name Index .................................................................................... 685 Subject Index.................................................................................. 691

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?