Normal view MARC view

Introduction to minimax

Author: Dem'yanov, V. F. ; Malozemov, V. N. ; Louvish, D., translation Series: Dover books on advanced mathematics Publisher: Dover Publications, 1990.Language: EnglishDescription: 307 p. : Graphs ; 24 cm.ISBN: 0486664236Type of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA402.5 .D46 1990
(Browse shelf)
32419001252934
Available 32419001252934
Total holds: 0

Includes bibliographical references and index

Digitized

Introduction to Minimax Contents PREFACE Chapter I. BEST APPROXIMATION BY ALGEBRAIC POLYNOMIALS DISCRETE CASE ............................................................................................ 6 § 1. Statement of the problem ..................................................................................... 6 § 2. Chebyshev interpolation ...................................................................................... 7 §3. General discrete case; de la Vallée-Poussin algorithm .......................................... 15 §4. R -algorithm ............................................................................................. 22 § 5. Reduction to linear programming ....................................................................... 26 Chapter II. BEST APPROXIMATION BY ALGEBRAIC POLYNOMIALS CONTINUOUS CASE .................................................................................... 31 §1. Statement of the problem .................................................................................... 31 §2. Chebyshev theorem. Chebyshev polynomials ...................................................... 32 §3. Limit theorems 37 §4. Remet' method of successive Chebyshev interpolations ....................................... 40 §5. Method of grids ................................................................................................... 44 § 6*. Behavior of coefficients of polynomials of best approximation ............................ 46 Chapter III. THE DISCRETE MINIMAX PROBLEM ............................................................ 50 § 1. Statement of the problem ................................................................................... 50 § 2. Properties of the maximum function .................................................................. 51 §3. Necessary conditions for a minimax .................................................................... 57 §4. Sufficient conditions for a local minimax. Some estimates .................................... 66 §5. Method of coordinatewise descent. Method of steepest descent. Counterexamples .............................................................................................. 73 §6. First method of successive approximations ......................................................... 82 §7. e -Stationary points. Second method of successive approximations...................... 91 § 8. The D-function. Third method of successive approximations .............................. 98 §9. Concluding remarks ......................................................................................... 107 Chapter IV. THE DISCRETE MINIMAX PROBLEM WITH CONSTRAINTS 113 1 § 1. Statement of the problem ................................................................................. 113 §2. Necessary conditions for a minimax .................................................................. 113 §3. Geometric interpretation of the necessary conditions 117 §4. Sufficient conditions for a local minimax with constraints ................................. 123 §5. Some estimates ............................................................................................... 127 §6. Method of successive approximations .............................................................. 130 Chapter V. THE GENERALIZED PROBLEM OF NONLINEAR PROGRAMMING ................ 137 §1. Statement of the problem ................................................................................ 137 §2. Properties of sets defined by inequalities ......................................................... 137 §3. Necessary conditions for a minimax ................................................................ 146 §4. Dependence of direction of descent on specific features of Q............................. 151 §5. Lagrange multipliers and the Kuhn-Tucker theorem ........................................ 155 §6. First method of successive approximations ...................................................... 160 §7. Determination of ( e,u-quasistationary points. Second method of successive approximations ......................................................................... 170 §8. Method of steepest descent. Case of linear constraints ..................................... 173 §9. Nonlinear constraints. Correction of directions ................................................ 177 §10. Penalty functions 182 §11. Concluding remarks ...................................................................................... 185 Chapter VI. THE CONTINUOUS MINIMAX PROBLEM .................................................... 187 §1. Statement of the problem ................................................................................ 187 §2. Fundamental theorems ................................................................................... 187 §3. Geometric interpretation of the necessary condition for a minimax. Some corollaries 195 §4. Convergence of the grid method ...................................................................... 204 §5. Special case of the minimax theorem ............................................................... 216 § 6*. Determination of saddle points on polyhedra................................................. 221 §7. Best approximation of functions of several variables by generalized polynomials §8. Best approximation of functions by algebraic polynomials on an interval .......................................................................................................... 236 Appendix I. ALGEBRAIC INTERPOLATION ..................................................................... 242 §1. Divided differences .......................................................................................... 242 §2. Interpolating polynomials ................................................................................ 244 Appendix II. CONVEX SETS AND CONVEX FUNCTIONS ................................................ 248 §1. Convex hulls. Separation theorem ................................................................... 248 §2. Convex cones .................................................................................................. 254 §3. Convex functions ............................................................................................ 260 Appendix CONTINUOUS AND CONTINUOUSLY DIFFERENTIABLE 230 FUNCTIONS ......................................................................................... 264 §1. Continuous functions 264 §2. Some equalities and inequalities for continuous functions ............................... 265 § 3. Continuously differentiable functions ............................................................. 269 Appendix IV. DETERMINATION OF THE POINT NEAREST THE ORIGIN ON A POLYHEDRON. ITERATIVE METHODS .................................................. 276 Supplement. ON MANDEL'SHTAM'S PROBLEM ............................................................. 296 NOTES .......................................................................................................................... 300 BIBLIOGRAPHY ............................................................................................................ 303 SUBJECT INDEX .......................................................................................................... 307

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?