Normal view MARC view

Models in cooperative game theory: crisp, fuzzy, and multi-choice games

Author: Branzei, Rodica ; Dimitrov, Dinko ; Tijs, Stef Series: Lecture notes in economics and mathematical systems ; 556 Publisher: Springer, 2005.Language: EnglishDescription: 135 p. ; 24 cm.ISBN: 9783540260820Type of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA269 .B73 2005
(Browse shelf)
001252361
Available 001252361
Total holds: 0

Includes bibliographical references and index

Digitized

Models in Cooperative Game Theory Crisp, Fuzzy, and Multi-Choice Games Contents Part I Cooperative Games with Crisp Coalitions 1 Preliminaries ............................................................................ 5 2 Cores and Related Solution Concepts....................................... 13 2.1 Imputations, Cores and Stable Sets ........................................... 13 2.2 1 The Core Cover, the Reasonable Set and the Weber Set ........... 18 3 The Shapley Value and the r-Value........................................... 23 3.1 The Shapley Value ..................................................................... 23 3.2 The r-Value ................................................................................ 28 4 Classes of Cooperative Crisp Games......................................... 31 4.1 Totally Balanced Games.............................................................. 4.1.1 Basic Characterizations ................................................... 4.1.2 Totally Balanced Games and Population Monotonic Allocation Schemes ........................................................ 4.2 Convex Games............................................................................ 4.2.1 Basic Characterizations ................................................... 4.2.2 Convex Games and Population Monotonic Allocation Schemes......................................................................... 4.2.3 The Constrained Egalitarian Solution for Convex Games 4.3 Clan Games ............................................................................... 4.3.1 Basic Characterizations ................................................... 4.3.2 Total Clan Games and Monotonic Allocation Schemes ..... 31 31 32 33 33 36 37 40 40 41 Part II Cooperative Games with Fuzzy Coalitions 5 Preliminaries .......................................................................... 49 6 Solution Concepts for Fuzzy Games ............................................. 53 6.1 6.2 6.3 6.4 6.5 Imputations and the Aubin Core ................................................ Other Cores and Stable Sets ...................................................... The Shapley Value and the Weber Set ........................................ Path Solutions and the Path Solution Cover ............................... Compromise Values..................................................................... 53 54 59 61 64 7 Convex Fuzzy Games....................................................................... 67 7.1 7.2 7.3 7.4 Basic Characterizations .............................................................. Properties of Solution Concepts .................................................. Participation Monotonic Allocation Schemes .............................. Egalitarianism in Convex Fuzzy Games....................................... 67 74 80 82 89 89 92 96 8 Fuzzy Clan Games................................................................................ 8.1 The Cone of Fuzzy Clan Games .................................................. 8.2 Cores and Stable Sets for Fuzzy Clan Games.............................. 8.3 Bi-Monotonic Participation Allocation Rules................................ Part III Multichoice Games 9 Preliminaries .................................................................................... 105 10 Solution Concepts for Multichoice Games................................. 109 10.1 Imputations, Cores and Stable Sets ......................................... 109 10.2 Marginal Vectors, Shapley Values and the Weber Set................ 113 11 Classes of Multichoice Games...................................................... 121 11.1 Balanced Multichoice Games.....................................................121 11.2 Convex Multichoice Games .......................................................125 References............................................................................................ 129 Index...................................................................................................... 133

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?