Normal view MARC view

Handbook of probability and statistics with tables

Author: Burington, Richard Stevens ; May, Donald CurtisPublisher: McGraw-Hill, 1970.Edition: 2nd ed.Language: EnglishDescription: 462 p. : Graphs ; 21 cm.ISBN: 0070090300Type of document: BookBibliography/Index: Includes index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA276 .B87 1970
(Browse shelf)
001251463
Available 001251463
Total holds: 0

Includes index

Digitized

Handbook of probability and statistics with tables Contents Preface v Part One one ELEMENTARY STATISTICS AND PROBABILITY THEORY Introduction........................................................................... 1 The field of statistics; The usefulness and limitations of statistics; Use of digital computers in statistical computations; Organization of book two three Certain Definitions Used In Statistics............................... 12 Measures of location, dispersion, skewness, kurtosis; Moments Frequency Distributions In One Dimension......................... 18 Ungrouped and grouped measurements; Measures of "middle," " spread," skewness and excess; Schemes for calculating mean and standard deviations four Combinatorial Mathematics................................................. 28 Sets, variable, relation, function, inverse; Partitions, selections, samples, permutations, combinations; Algebra of events five Elementary Probability Theory ....................................... 42 Definitions and axioms; Conditional probabilities; Events expressible in terms of continuous variables; Probability distributions; Probability functions; Statistical independence; Mathematical expectation; Description of distributions by Stieltjes integrals; 6function six Probability Distributions I One Dimension.......................... 62 Discrete probability distributions; Parameters which describe a discrete distribution; Causal distribution; Equal probability distribution; General discrete distribution; Pascal's distribution; Pólya's distribution; Probability distributions continuous on an interval; Parameters which describe continuous distribution; Rectangular distribution; Cauchy's distribution; La-place's distribution; Sheppard's correction; Folded distributions; Truncated and censored distributions seven Generating and Characteristic Functions.......................... 81 Generating functions; Characteristic functions; Multivariable case; Convolution eight Binomial. Negative Binomial. Hypergeometric and Related Distributions ........................................................ 92 Binomial distribution; DeMoivre's theorem; Correction for continuity; Multinomial distribution; Negative binomial distribution; Geometric distribution; Hypergeometric distribution nine Poisson. Exponential and Weibull Distributions ................ 105 Poisson distribution; Exponential distribution; Weibull distribution ten Normal Distribution ............................................................ 110 Properties; Probability of occurrence of certain deviations; Fitting normal distribution to frequency polygon; Random sampling from normal distribution; Log normal distribution eleven Probability Distributions in Two or More Dimensions.......... 125 The two-dimensional case; Probability ellipse; Normal probability integral over circular disk; The three-dimensional case; Probability ellipsoid; Graphical methods; Transformation of variables twelve Analysis of Pairs of Measurements, Regression Theory, Orthogonal Polynomials. Time Series.............. 150 Analysis of pairs of measurements; General regression and correrelation; Time series; Confidence intervals for regression lines when dependent variable is normally distributed; Orthogonal polynomials thirteen Sampling Distributions ....................................................... 177 Estimators; Sampling distributions; Sample range; Order statistics; Use of random numbers fourteen Statistical Inference, Significance Tests and Confidence Intervals ....................................................... 223 Statistical inference; Tests of significance; Confidence intervals; Type I and Type II errors; Tolerance limits; Non-parametric tests fifteen sixteen Design of Experiments and Analysis of Variance ............... 270 Finite Differences. Interpolation ....................................... 299 seventeen Sequential Analysis, Sampling Inspection, Quality Control, Reliability Theory............................................... 308 Sequential analysis; Sampling inspection by attributes; Quality control; Acceptance sampling plans based on parameters; Reliability theory eighteen Short Table of Integrals. Some Mathematical Relationship 340 Part Two TABLES Discrete Distribution Functions............................................................ 347 1. Binomial Distribution Function 347 2. Summed Binomial Distribution Function 351 3. Incomplete Beta Function Ratio 355 4. Binomial Coefficients 357 5. Values of V¯npq 358 6. Values of V¯pq 358 7. Poisson Distribution Function 359 8. Summed Poisson Distribution Function 363 Continuous Distribution Functions....................................................... 367 9. Normal Distribution 367 10. F-Distribution 376 11. z-Distribution 380 12. I-Distribution 383 13. t-Distribution; Cumulative Distribution Function 384 Nomogram for Calculating 1 -- (1 -- p)n 385 14. x2-Distribution 386 15. Values of e¯x 388 Factorials and Their Logarithms............................................................ 390 16. 17. 18. 19. Factorials and Logarithms of Factorials 390 Gamma Function 391 Common Logarithms of Gamma Function 392 Factorials and Their Reciprocals 392 Tolerance Factors for Normal Populations............................................. 393 20. Two-sided Tolerance Factors for Normal Populations 393 21. One-sided Tolerance Factors for Normal Populations 394 Random Numbers.................................................................................. 395 22. Random Numbers 395 23. Random Normal Numbers 400 Powers, Roots., Reciprocals................................................................... 410 24. Squares, Square-roots, and Reciprocals 410 Natural Trigonometric Functions, Natural and Common Logarithms............................................................................... 420 25. Natural Trigonometric Functions 420 26. Natural Logarithms of Numbers 421 27. Common Logarithms of Numbers 425 References 427 Glossary of Symbols 431 Name Index 435 Index of Symbols 437 Index of Greek Symbols 439 Index of Numerical Tables 441 Subject Index 443

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?