Normal view MARC view

Proofs from the book

Author: Aigner, Martin ; Ziegler, Gunter M.Publisher: Springer, 2003.Edition: 3rd ed.Language: EnglishDescription: Ill./Photos ; 25 cm.ISBN: 9783540404606Type of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA36 .A54 2003
(Browse shelf)
001195357
Available 001195357
Total holds: 0

Includes bibliographical references and index

Digitized

Proofs From The Book Table of Contents Number Theory 1 1. Six proofs of the infinity of primes ....................................................... 3 2. Bertrand's postulate ................................................................................ 7 3. Binomial coefficients are (almost) never powers ............................... 13 4. Representing numbers as sums of two squares ................................... 17 5. Every finite division ring is a field ...................................................... 23 6. Some irrational numbers ..................................................................... 27 7. Three times 7r2/ 6 ................................................................................... 35 Geometry 43 8. Hilbert's third problem: decomposing polyhedra ................................ 45 9. Lines in the plane and decompositions of graphs ............................... 53 10. The slope problem .............................................................................. 59 11. Three applications of Euler's formula ............................................... 65 12. Cauchy's rigidity theorem ................................................................. 71 13. Touching simplices ............................................................................ 75 14. Every large point set has an obtuse angle ......................................... 79 15. Borsuk's conjecture ........................................................................... 85 Analysis 91 16. Sets, functions, and the continuum hypothesis .................................. 93 17. In praise of inequalities ................................................................... 109 18. A theorem of Pólya on polynomials ................................................ 117 19. On a lemma of Littlewood and Offord ............................................ 123 20. Cotangent and the Herglotz trick .................................................... 127 21. Buffon's needle problem ................................................................. 133 Combinatorics 137 22. Pigeon-hole and double counting ..................................................... 139 23. Three famous theorems on finite sets .............................................. 151 24. Shuffling cards .................................................................................. 157 25. Lattice paths and determinants .......................................................... 167 26. Cayley's formula for the number of trees ......................................... 173 27. Completing Latin squares ................................................................. 179 28. The Dinitz problem .......................................................................... 185 29. Identities versus bijections ............................................................... 191 Graph Theory 197 30. Five-coloring plane graphs ............................................................... 199 31. How to guard a museum ................................................................... 203 32. Turán's graph theorem ...................................................................... 207 33. Communicating without errors ........................................................ 213 34. Of friends and politicians ................................................................. 223 35. Probability makes counting (sometimes) easy ................................. 227 About the Illustrations Index 236 237

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?