Normal view MARC view

Introduction to stochastic calculus for finance: a new didactic approach

Author: Sondermann, Dieter Series: Lecture notes in economics and mathematical systems ; 579 Publisher: Springer, 2006.Language: EnglishDescription: 136 p. ; 24 cm.ISBN: 3540348360Type of document: BookBibliography/Index: Includes bibliographical references
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA274 .S66 2006
(Browse shelf)
001127343
Available 001127343
Total holds: 0

Includes bibliographical references

Digitized

Introduction to Stochastic Calculus for Finance A New Didactic Approach Contents Introduction........................................................................................................... 1 1 Preliminaries ..................................................................................................... 3 1.1 Brief Sketch of Lebesgue's Integral ......................................... 3 1.2 Convergence Concepts for Random Variables ......................... 7 1.3 The Lebesgue-Stieltjes Integral............................................... 10 1.4 Exercises............................................................................... 13 2 Introduction to Ito-Calculus ..................................................................... 2.1 Stochastic Calculus vs. Classical Calculus .......................... 2.2 Quadratic Variation and 1-dimensional Ito-Formula ........... 2.3 Covariation and Multidimensional Ito-Formula.................... 2.4 Examples ............................................................................. 2.5 First Application to Financial Markets.................................. 2.6 Stopping Times and Local Martingales.................................. 2.7 Local Martingales and Semimartingales ............................... 2.8 Itô's Representation Theorem................................................ 2.9 Application to Option Pricing ................................................ 3 The Girsanov Transformation.................................................................... 3.1 Heuristic Introduction ......................................................... 3.2 The General Girsanov Transformation .................................. 3.3 Application to Brownian Motion ............................................ 4 Application to Financial Economics ....................................................... 4.1 The Market Price of Risk and Risk-neutral Valuation ........... 4.2 The Fundamental Pricing Rule.............................................. 4.3 Connection with the PDE-Approach (Feynrnan-Kac Formula) ..................................................... 15 15 18 26 31 33 36 44 49 50 55 55 58 63 67 68 73 76 4.4 Currency Options and Siegel-Paradox........................................ 4.5 Change of Numeraire ....................................................................... 4.6 Solution of the Siegel-Paradox ...................................................... 4.7 Admissible Strategies and Arbitrage-free Pricing ................... 4.8 The "Forward Measure" ................................................................... 4.9 Option Pricing Under Stochastic Interest Rates ..................... 78 79 84 86 89 92 5 Term Structure Models .............................................................................. 95 5.1 Different Descriptions of the Term Structure of Interest Rates...................................................................................................... 96 5.2 Stochastics of the Term Structure ............................................... 99 5.3 The HJM-Model ............................................................................... 102 5.4 Examples ........................................................................................... 105 5.5 The "LIBOR Market" Model .......................................................... 107 5.6 Caps, Floors and Swaps................................................................ 111 6 Why Do We Need Ito-Calculus in Finance? .................................................................. 113 6.1 The Buy-Sell-Paradox .................................................................... 114 6.2 Local Times and Generalized Ito Formula .............................. 115 6.3 Solution of the Buy-Sell-Paradox............................................... 120 6.4 Arrow-Debreu Prices in Finance................................................. 121 6.5 The Time Value of an Option as Expected Local Time ....... 123 7 Appendix: Ito Calculus Without Probabilities.................................. 125 References........................................................................................................ 135

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?