Normal view MARC view

Elements of mathematics for economics and finance

Author: Mavron, Vassilis C. ; Phillips, Timothy N.Publisher: Springer, 2007.Language: EnglishDescription: 312 p. : Graphs ; 24 cm.ISBN: 1846285607Type of document: BookBibliography/Index: Includes index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print QA37 .M38 2007
(Browse shelf)
001127228
Available 001127228
Total holds: 0

Includes index

Digitized

Elements of Mathematics for Economics and Finance Contents 1. Essential Skills.............................................................................................. 1.1 Introduction ...................................................................................... 1.2 Numbers ............................................................................................ 1.2.1 Addition and Subtraction ....................................................... 1.2.2 Multiplication and Division ..................................................... 1 1 2 3 3 1.2.3 Evaluation of Arithmetical Expressions................................... 4 1.3 Fractions ........................................................................................... 5 1.3.1 Multiplication and Division ..................................................... 7 1.4 Decimal Representation of Numbers .................................................. 8 1.4.1 Standard Form..................................................................... 10 1.5 Percentages....................................................................................... 10 1.6 Powers and Indices ........................................................................... 12 1.7 Simplifying Algebraic Expressions .................................................... 16 1.7.1 Multiplying Brackets............................................................... 16 1.7.2 Factorization .......................................................................... 18 2. Linear Equations ............................................................................................ 23 2.1 Introduction .................................................................................... 23 2.2 Solution of Linear Equations ............................................................ 24 2.3 Solution of Simultaneous Linear Equations..................................... 2.4 Graphs of Linear Equations.............................................................. 2.4.1 Slope of a Straight Line .......................................................... 2.5 Budget Lines ..................................................................................... 2.6 Supply and Demand Analysis .......................................................... 2.6.1 Multicommodity Markets........................................................ 27 30 34 37 40 44 3. Quadratic Equations........................................................................................ 49 3.1 Introduction ..................................................................................... 49 3.2 Graphs of Quadratic Functions........................................................ 50 3.3 Quadratic Equations......................................................................... 56 3.4 Applications to Economics.................................................................. 61 4. Functions of a Single Variable ..................................................................... 69 4.1 Introduction ..................................................................................... 69 4.2 Limits .................................................................................................. 72 4.3 Polynomial Functions ........................................................................ 72 4.4 Reciprocal Functions......................................................................... 75 4.5 Inverse Functions.............................................................................. 81 5. The Exponential and Logarithmic Functions ............................................. 87 5.1 Introduction ..................................................................................... 87 5.2 Exponential Functions ..................................................................... 88 5.3 Logarithmic Functions ...................................................................... 90 5.4 Returns to Scale of Production Functions......................................... 95 5.4.1 Cobb-Douglas Production Functions ..................................... 97 5.5 Compounding of Interest ................................................................... 98 5.6 Applications of the Exponential Function in Economic Modelling ............................................................................ 102 6. Differentiation .............................................................................................. 6.1 Introduction ..................................................................................... 6.2 Rules of Differentiation........................................................................ 6.2.1 Constant Functions .............................................................. 6.2.2 Linear Functions ................................................................... 6.2.3 Power Functions .................................................................... 6.2.4 Sums and Differences of Functions........................................ 6.2.5 Product of Functions ............................................................. 6.2.6 Quotient of Functions............................................................ 109 109 113 113 114 114 114 116 117 6.2.7 The Chain Rule....................................................................... 117 6.3 Exponential and Logarithmic Functions .......................................... 119 6.4 Marginal Functions in Economics..................................................... 6.4.1 Marginal Revenue and Marginal Cost .................................... 6.4.2 Marginal Propensities ............................................................. 6.5 Approximation to Marginal Functions............................................... 6.6 Higher Order Derivatives .................................................................... 6.7 Production Functions ....................................................................... 121 121 123 125 127 129 7. Maxima and Minima ....................................................................................... 137 7.1 Introduction ................................................................................... 137 7.2 Local Properties of Functions ........................................................... 138 7.2.1 Increasing and Decreasing Functions .................................. 7.2.2 Concave and Convex Functions ............................................ 7.3 Local or Relative Extrema.................................................................. 7.4 Global or Absolute Extrema .............................................................. 7.5 Points of Inflection ............................................................................. 7.6 Optimization of Production Functions.............................................. 138 138 139 144 145 146 7.7 Optimization of Profit Functions ...................................................... 151 7.8 Other Examples................................................................................ 154 8. Partial Differentiation .................................................................................. 8.1 Introduction ................................................................................... 8.2 Functions of Two or More Variables ................................................. 8.3 Partial Derivatives.............................................................................. 8.4 Higher Order Partial Derivatives ...................................................... 159 159 160 160 163 8.5 Partial Rate of Change...................................................................... 165 8.6 The Chain Rule and Total Derivatives .............................................. 168 8.7 Some Applications of Partial Derivatives .......................................... 171 8.7.1 Implicit Differentiation ........................................................... 8.7.2 Elasticity of Demand ............................................................. 8.7.3 Utility ...................................................................................... 8.7.4 Production ............................................................................ 171 173 176 179 8.7.5 Graphical Representations.................................................... 181 9. Optimization ................................................................................................. 185 9.1 Introduction ................................................................................... 185 9.2 Unconstrained Optimization ........................................................... 186 9.3 Constrained Optimization ............................................................... 193 9.3.1 Substitution Method............................................................. 193 9.3.2 Lagrange Multipliers............................................................... 197 9.3.3 The Lagrange Multiplier A: An Interpretation........................ 201 9.4 Iso Curves..........................................................................................204 10. Matrices and Determinants....................................................................... 209 10.1 Introduction ................................................................................. 209 10.2 Matrix Operations........................................................................... 209 10.2.1 Scalar Multiplication.......................................................... 211 10.2.2 Matrix Addition.................................................................... 212 10.2.3 Matrix Multiplication ......................................................... 212 10.3 Solutions of Linear Systems of Equations ..................................... 220 10.4 Cramer's Rule ................................................................................ 222 10.5 More Determinants ........................................................................ 223 10.6 Special Cases ................................................................................. 230 11. Integration .................................................................................................. 233 11.1 Introduction ................................................................................. 233 11.2 Rules of Integration......................................................................... 236 11.3 Definite Integrals ............................................................................. 11.4 Definite Integration: Area and Summation..................................... 11.5 Producer's Surplus ...................................................................... 11.6 Consumer's Surplus..................................................................... 241 243 250 251 12. Linear Difference Equations ..................................................................... 261 12.1 Introduction ................................................................................. 261 12.2 Difference Equations ....................................................................... 261 12.3 First Order Linear Difference Equations ....................................... 12.4 Stability.......................................................................................... 12.5 The Cobweb Model............................................................................. 12.6 Second Order Linear Difference Equations .................................... 264 267 270 273 12.6.1 Complementary Solutions ................................................. 274 12.6.2 Particular Solutions ......................................................... 277 12.6.3 Stability ............................................................................. 282 13. Differential Equations ............................................................................... 287 13.1 Introduction ................................................................................. 287 13.2 First Order Linear Differential Equations ..................................... 288 13.2.1 Stability ............................................................................. 13.3 Nonlinear First Order Differential Equations ................................ 13.3.1 Separation of Variables...................................................... 13.4 Second Order Linear Differential Equations ................................. 13.4.1 The Homogeneous Case .................................................... 13.4.2 The General Case ............................................................... 13.4.3 Stability ............................................................................. 292 292 294 296 297 300 302 A. Differentials .................................................................................................. 305 Index..................................................................................................................................... 309

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?