Normal view MARC view

Introduction to game theory

Author: Morris, Peter Series: Universitext Publisher: Springer, 1994.Language: EnglishDescription: 230 p. ; 24 cm.ISBN: 038794284XType of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print HB144 .M67 1994
(Browse shelf)
001212145
Available 001212145
Total holds: 0

Includes bibliographical references and index

Digitized

Introduction to Game Theory Contents Preface List of Figures 1. Games in Extensive Form 1.1. Trees 1.2. Game Trees 1.2.1. Information Sets 1.3. Choice Functions and Strategies 1.3.1. Choice Subtrees 1.4. Games with Chance Moves 1.4.1. A Theorem on Payoffs 1.5. Equilibrium N-tuples of Strategies 1.6. Normal Forms 2. Two-Person Zero-Sum Games 2.1. Saddle Points 2.2. Mixed Strategies 2.2.1. Row Values and Column Values 2.2.2. Dominated Rows and Columns 2.3. Small Games 2.3.1. 2 x n and m x 2 Games 2.4. Symmetric Games 2.4.1. Solving Symmetric Games vii xv 1 3 7 11 12 13 20 22 24 29 35 36 40 43 48 52 55 59 60 xii Contents 3. Linear Programming 3.1. Primal and Dual Problems 3.1.1. Primal Problems and Their Duals 3.2. Basic Forms and Pivots 3.2.1. Pivots 3.2.2. Dual Basic Forms 3.3. The Simplex Algorithm 3.3.1. Tableaus 3.3.2. The Simplex Algorithm 3.4. Avoiding Cycles and Achieving Feasibility 3.4.1. Degeneracy and Cycles 3.4.2. The Initial Feasible Tableau 3.5. Duality 3.5.1. The Dual Simplex Algorithm 3.5.2. The Duality Theorem 4. Solving Matrix Games 4.1. The Minimax Theorem 4.2. Some Examples 4.2.1. Scissors-Paper-Stone 4.2.2. Three-Finger Morra 4.2.3. Colonel Blotto's Game 4.2.4. Simple Poker 5. Non-Zero-Sum Games 5.1. Noncooperative Games 5.1.1. Mixed Strategies 5.1.2. Maximin Values 5.1.3. Equilibrium N-tuples of Mixed Strategies 5.1.4. A Graphical Method for Computing Equilibrium Pairs 5.2. Solution Concepts for Noncooperative Games 5.2.1. Battle of the Buddies 5.2.2. Prisoner's Dilemma 5.2.3. Another Game 5.2.4. Supergames 5.3. Cooperative Games 5.3.1. Nash Bargaining Axioms 5.3.2. Convex Sets 5.3.3. Nash's Theorem 65 65 67 71 72 75 78 78 81 85 85 88 91 92 95 99 99 104 104 106 107 108 115 116 117 119 120 121 124 126 127 127 128 132 134 136 138 Contents xiii 5.3.4. Computing Arbitration Pairs 5.3.5. Remarks 6. N-Person Cooperative Games 6.1. Coalitions 6.1.1. The Characteristic Function 6.1.2. Essential and Inessential Games 6.2. Imputations 6.2.1. Dominance of Imputations 6.2.2. The Core 6.2.3. Constant-Sum Games 6.2.4. A Voting Game 6.3. Strategic Equivalence 6.3.1. Equivalence and Imputations 6.3.2. (0,1)-Reduced Form 6.3.3. Classification of Small Games 6.4. Two Solution Concepts 6.4.1. Stable Sets of Imputations 6.4.2. Shapley Values 7. Game-Playing Programs 7.1. Three Algorithms 7.1.1. The Naive Algorithm 7.1.2. The Branch and Bound Algorithm 7.1.3. The Alpha-Beta Pruning Algorithm 7.2. Evaluation Functions 7.2.1. Depth-Limited Subgames 7.2.2. Mancala 7.2.3. Nine-Men's Morris Appendix. Solutions Bibliography Index 143 145 149 149 150 154 156 158 159 163 165 167 169 170 172 174 174 178 185 186 186 187 189 191 192 194 197 201 223 227

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?