Normal view MARC view

Mathematical methods in risk theory

Author: Bühlmann, Hans Series: Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen ; 172 Publisher: Springer, 1970.Language: EnglishDescription: 210 p. ; 24 cm.ISBN: 3540617035Type of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print HG8771 .B84 1970
(Browse shelf)
001212046
Available 001212046
Total holds: 0

Includes bibliographical references and index

Digitized

Mathematical Methods in Risk Theory Table of Contents Part I. The Theoretical Model Chapter 1: Probability Aspects of Risk ........................................................................ 3 1.1. Random variables explained by the example of daim amount............................ 3 1.1.1. Definition .................................................................................................. 3 1.1.2. Classification and examples of distribution functions .............................. 4 1.1.3. Expected values ......................................................................................... 12 1.1.4. Characteristics of a probability distribution and auxiliary functions ........15 1.1.5. Chebyshev's Inequality ............................................................................. 21 1.2. Sequences of random variables explained by the example of daim amount reproductions ....................................................................................................... 22 1.2.1. Multi-dimensional distributions and auxiliary functions .......................... 22 1.2.2. Conditional distribution functions and conditional expectation . ............. 25 1.2.3. Independence ............................................................................................. 28 1.2.4. Covariance and correlation ....................................................................... 31 1.2.5. The law of large numbers........................................................................... 32 Chapter 2: The Risk Process ......................................................................................... 35 2.1. Fundamentals ...................................................................................................... 35 2.1.1. Definitions and intuitive description of risk ............................................. 35 2.1.2. Stochastic processes with independent increments .................................. 37 2.1.3. Markov processes ...................................................................................... 39 2.2. The daim number process ................................................................................... 41 2.2.1. Mathematical description........................................................................... 41 2.2.2. The daim interoccurrence time ................................................................. 47 2.2.3. The homogeneous daim number process--operational time . . . .............. 49 2.2.4. The case of time-independent intensifies of daim frequency: contagion models ................................................................................................ 51 2.3. The accumulated daim process .......................................................................... 54 2.3.1. Definition as random sum and basic representation .................................54 2.3.2. Proof of the basic representation of the accumulated claim distribution . 56 2.3.3. The reduced basic representation: time-independent daim amounts ....... 57 2.3.4. The reduced basic representation: time-dependent daim amounts ...........58 2.3.5. An example................................................................................................ 60 Chapter 3: The Risk in the Collective .......................................................................... 63 3.1. Risk-theoretical definitions ................................................................................ 3.1.1. Risk and collective .................................................................................... 3.1.2. The structure function ............................................................................... 3.2. The weighted risk process as description of the risk in the collective . . ........... 3.2.1. Weighted laws of probability .................................................................... 3.2.2. The risk pattern in the collective................................................................ 63 63 65 65 65 67 X Table of Contents 3.2.3. The number of claims process in the collective .................................... 68 3.2.4. The weighted Poisson and negative binomial distributions . . . ............ 69 3.2.5. The accumulated daim process in the collective ................................... 73 3.3. Portfolios in the collective .............................................................................. 76 3.3.1. Some definitions .................................................................................... 76 3.3.2. Stabilizing in time (Theorem of Ove Lundberg) ................................... 77 3.3.3. Stabilizing in size ................................................................................... 80 Part II. Consequences of the Theoretical Model Chapter 4: Premium Calculation ................................................................................ 85 4.1. Principles of premium calculation .................................................................... 85 4.1.1. General ................................................................................................... 85 4.1.2. Some principles of premium calculation ............................................... 86 4.1.3. Discussion of the principles of premium calculation ............................ 86 4.2. The risk premium and the collective premium ................................................. 87 4.2.1. The risk premium ................................................................................... 87 4.2.2. The collective premium.......................................................................... 88 4.2.3. Statistics and collective premium .......................................................... 89 4.2.4. The dilemma and the connection between risk and collective premium 90 4.3. The credibility premium ................................................................................... 93 4.3.1. The credibility premium as sequential approximation to the risk premium ................................................................................................. 93 4.3.2. A new interpretation of the variance principle for calculation of premiums ................................................................................................ 94 4.3.3. Construction of the credibility premium ............................................... 96 4.3.4. Assumptions for our further investigations ........................................... 98 4.3.5. Properties of the credibility premium .................................................... 98 4.3.6. The credibility formulae for the three components of the credibility premium ................................................................................................. 100 4.3.7. Determining the weights in the credibility formulae ............................. 103 4.4. A practical example: risk, collective and credibility premium in automobile liability insurance............................................................................................. 106 Chapter 5: Retentions and Reserves ........................................................................... 111 5.1. The retention problem ...................................................................................... 111 5.1.1. General ................................................................................................... 111 5.1.2. The retention under proportional and non-proportional reinsurance .... 112 5.2. The relative retention problem ......................................................................... 113 5.2.1. Proportional reinsurance ........................................................................ 114 5.2.2. Non-proportional reinsurance................................................................. 116 5.2.3. The risk with given risk parameter and the risk in the collective under non-proportional reinsurance ................................................................. 119 5.2.4. Credibility approximation for the relative retention ............................. 121 5.3. The absolute retention problem......................................................................... 124 5.3.1. Exact statement of the problem ............................................................. 124 5.3.2. The random walk of the risk carrier's free reserves generated by the risk mass.................................................................................................. 126 5.4. Reserves............................................................................................................. 129 Table of Contents XI Chapter 6: The Insurance Carrier's Stability Criteria ................................................ 131 6.1. The stability problem ....................................................................................... 131 6.1.1. Decision variables .................................................................................. 131 6.1.2. Stability problem and stability criteria ................................................... 132 6.2. The probability of ruin as stability criterion .................................................... 133 6.2.1. Planning horizon and ruin probability .................................................... 133 6.2.2. Admissible stability policies.................................................................... 135 6.2.3. Hypotheses about the model variables in calculating the probability of ruin ...................................................................................................... 135 6.2.4. Calculating the probability of ruin in the discrete case with finite planning horizon ..................................................................................... 137 6.2.5. Calculating the probability of ruin with an infinite planning horizon using the Wiener-Hopi method ............................................................... 141 6.2.6. Calculating the probability of ruin in the continuous case with infinite planning horizon using renewal theory methods........................ 144 6.3. The absolute retention when the probability of ruin is chosen as the stability criterion .............................................................................................. 152 6.3.1. Restatement of the problem and assumptions ........................................ 152 6.3.2. The optimal gradation of retentions ....................................................... 154 6.3.3. The stability condition ............................................................................ 155 6.3.4. Determining the absolute retention when the risk parameter is known . 156 6.3.5. Determining the absolute retention when the risk parameters are drawn from one or more collectives ....................................................... 159 6.3.6. Practical remark on the probability of min as stability criterion . ......... 163 6.4. Dividend policy as criterion of stability ............................................................ 164 6.4.1. General description of the criterion ........................................................ 164 6.4.2. Hypotheses about the model variables when the dividend policy is used as stability criterion ........................................................................ 165 6.4.3. Dividend policy in the discrete case....................................................... 165 6.4.4. Results in the discrete case...................................................................... 166 6.4.5. Barrier strategies in the discrete case ..................................................... 168 6.4.6. Dividend policy in the continuous case .................................................. 168 6.4.7. The integro-differential equation of the barrier strategy in the continuous case ....................................................................................... 171 6.4.8. Solving the integro-differential equation for V(Q, a) ............................ 172 6.4.9. Asymptotic formula for ao....................................................................... 174 6.4.10. Optimum dividend policy for Q> a0 and other evaluations . . . ........... 177 6.5. Utility as criterion of stability ........................................................................... 178 6.5.1. Evaluating the random walk of free reserves ......................................... 178 6.5.2. Equivalent evaluations; definition of utility ........................................... 179 6.5.3. Axioms about utility ............................................................................... 182 6.5.4. Existence theorem for an equivalent utility ............................................ 184 6.5.5. Integral evaluation................................................................................... 188 6.5.6. The problem of risk exchange................................................................. 190 6.5.7. The theorem of Borch ............................................................................. 191 6.5.8. A consequence of Borch's theorem......................................................... 195 6.5.9. Price structures with quadratic utility kernels ........................................ 197 XII Table of Contents Appendix: The Generalized Riemann-Stieltjes Integral........................................... 201 A.1. Preliminary .................................................................................................... 201 A.2. Definition of the generalized Riemann-Stieltjes integral in two special cases ............................................................................................................... 201 A.3. Definition in the general case ........................................................................ 203 A.4. Integrable functions ....................................................................................... 203 A.5. Properties of the generalized Riemann-Stieltjes integral .............................. 204 Bibliography ............................................................................................................. 206 Index.......................................................................................................................... 209

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?