How to solve it: modern heuristics
Author: Michalewicz, Zbigniew ; Fogel, David B.Publisher: Springer, 2004.Edition: 2nd revised and extended ed.Language: EnglishDescription: 554 p. : Graphs ; 24 cm.ISBN: 3540224947Type of document: BookBibliography/Index: Includes bibliographical references and indexItem type | Current location | Collection | Call number | Status | Date due | Barcode | Item holds |
---|---|---|---|---|---|---|---|
![]() |
Europe Campus Main Collection |
QA402.5 .M53 2004
(Browse shelf) 32419001174469 |
Available | 32419001174469 |
Includes bibliographical references and index
Digitized
How to Solve It: Modern Heuristics Table of Contents Introduction ............................................................................................... I What Are the Ages of My Three Sons? ......................................................... 1 9 1 Why Are Some Problems Difficult to Solve? ................................................ 11 1.1 The size of the search space .............................................................. 1.2 Modeling the problem ....................................................................... 1.3 Change over time ............................................................................. 1.4 Constraints ...................................................................................... 1.5 The problem of proving things ........................................................... 1.6 Your chance for glory ........................................................................ 1.7 Summary ......................................................................................... 11 16 19 21 24 26 29 II How Important Is a Model? ....................................................................... 31 2 Basic Concepts ........................................................................................ 35 2.1 Representation ................................................................................. 35 2.2 The objective .................................................................................... 36 2.3 The evaluation function .................................................................... 37 2.4 Defining a search problem ................................................................. 39 2.5 Neighborhoods and local optima......................................................... 40 2.6 Hill-climbing methods ....................................................................... 43 2.7 Can you sink this trick shot?.............................................................. 4 5 2.8 Summary ......................................................................................... 48 III What Are the Prices in 7-11? .................................................................... 49 3 Traditional Methods Part 1 ............................................................... 3.1 Exhaustive search ............................................................................ 3.1.1 Enumerating the SAT ............................................................. 3.1.2 Enumerating the TSP ............................................................. 3.1.3 Enumerating the NLP ............................................................. 3.2 Local search ..................................................................................... 3.2.1 Local search and the SAT ...................................................... 3.2.2 Local search and the TSP ...................................................... 55 58 59 61 62 64 65 66 XIV Table of Contents 3.2.3 Local search and the NLP ..................................................... 69 3.3 Linear programming: The simplex method ....................................... 76 3.4 Summary ...................................................................................... 80 IV What Are the Numbers? ........................................................................ 83 4 Traditional Methods Part 2 ..................................................................... 87 4.1 Greedy algorithms .......................................................................... 87 4.1.1 Greedy algorithms and the SAT ............................................. 87 4.1.2 Greedy algorithms and the TSP ............................................. 89 4.1.3 Greedy algorithms and the NLP ............................................. 90 4.2 Divide and conquer ........................................................................ 90 4.3 Dynamic programming ................................................................... 93 4.4 Branch and bound ....................................................................... 101 4.5 A* algorithm ................................................................................ 105 4.6 Summary .................................................................................... 109 V What's the Color of the Bear? ................................................................ 111 5 Escaping Local Optima ......................................................................... 115 5.1 Simulated annealing ..................................................................... 117 5.2 Tabu search ................................................................................. 125 5.3 Summary .................................................................................... 134 VI How Good Is Your Intuition? ................................................................ 135 6 An Evolutionary Approach .................................................................... 6.1 Evolutionary approach for the SAT ................................................ 6.2 Evolutionary approach for the TSP ................................................ 6.3 Evolutionary approach for the NLP ................................................ 6.4 Summary .................................................................................... 139 142 145 149 151 VII One of These Things Is Not Like the Others .......................................... 157 7 Designing Evolutionary Algorithms ........................................................ 7.1 Representation ............................................................................. 7.1.1 Fixed-length vectors of symbols ........................................... 7.1.2 Permutations ..................................................................... 7.1.3 Finite state machines ......................................................... 7.1.4 Symbolic expressions ......................................................... 7.2 Evaluation function ...................................................................... 7.3 Variation operators ....................................................................... 7.3.1 Fixed-length vectors of symbols ........................................... 7.3.2 Permutations ..................................................................... 7.3.3 Finite state machines ......................................................... 7.3.4 Symbolic expressions ......................................................... 7.4 Selection ...................................................................................... 161 165 166 167 168 168 169 172 173 174 176 177 179 Table of Contents XV 7.5 Initialization ................................................................................... 181 7.6 Summary ...................................................................................... 183 VIII What Is the Shortest Way? ................................................................... 185 8 The Traveling Salesman Problem ............................................................. 189 8.1 In search of good variation operators ................................................ 8.2 Incorporating local search methods .................................................. 8.3 Other possibilities ........................................................................... 8.3.1 Edge assembly crossover ....................................................... 8.3.2 Inver-over operator ............................................................... 8.4 Summary ...................................................................................... 191 214 217 217 220 223 IX Who Owns the Zebra? ........................................................................... 225 9 Constraint-Handling Techniques .............................................................. 231 9.1 General considerations .................................................................... 232 9.1.1 Designing eval f .................................................................................................................................... 234 9.1.2 Design of evaln ...................................................................................................................................... 236 9.1.3 Relationship between eval f and evaln ......................................................................... 237 9.1.4 Rejecting infeasible solutions ................................................. 239 9.1.5 Repairing infeasible individuals .............................................. 239 9.1.6 Replacing individuals by their repaired versions ....................... 240 9.1.7 Penalizing infeasible individuals ............................................. 240 9.1.8 Maintaining a feasible population using special representations and variation operators ........................................... 241 9.1.9 Using decoders ..................................................................... 242 9.1.10 Separating individuals and constraints ................................. 243 9.1.11 Exploring boundaries between feasible and infeasible parts of the search space ............................................................. 243 9.1.12 Finding feasible solutions .................................................... 244 9.2 Numerical optimization ................................................................... 245 9.2.1 Methods based on preserving the feasibility of solutions ........... 246 9.2.2 Methods based on penalty functions ....................................... 249 9.2.3 Methods based on a search for feasible solutions ..................... 257 9.2.4 Methods based on decoders ................................................... 264 9.2.5 Hybrid methods ................................................................... 266 9.3 Summary ...................................................................................... 268 X Can You Tune to the Problem? ................................................................ 271 10 Tuning the Algorithm to the Problem ...................................................... 277 10.1 Parameter control in evolutionary algorithms ................................... 10.2 Illustrating the case with an NLP .................................................... 10.3 Taxonomy of control techniques ..................................................... 10.4 The possibilities for parameter control ............................................. 277 282 284 288 XVI Table of Contents 10.4.1 Representation .................................................................. 10.4.2 Evaluation function ........................................................... 10.4.3 Mutation operators and their probabilities ............................ 10.4.4 Crossover operators and their probabilities ........................... 10.4.5 Parent selection ................................................................. 10.4.6 Population ........................................................................ 10.5 Combining forms of parameter control ........................................... 10.6 Summary .................................................................................... 288 289 290 293 295 295 296 298 XI Can You Mate in Two Moves? ................................................................ 303 11 Time-Varying Environments and Noise .................................................. 11.1 Life presents a dynamic landscape ................................................. 11.2 The real world is noisy .................................................................. 11.2.1 Ensuring diversity ............................................................. 11.3 Modeling of ship trajectory ............................................................ 11.4 Summary .................................................................................... 307 307 317 321 325 329 XII Day of the Week of January 1st ............................................................ 335 12 Neural Networks .................................................................................. 339 12.1 Threshold neurons and linear discriminant functions ...................... 340 12.2 Back propagation for feed forward multilayer perceptrons . . . ........... 345 12.3 Training and testing ..................................................................... 350 12.4 Recurrent networks and extended architectures .............................. 352 12.4.1 Standard recurrent network ............................................... 352 12.4.2 Hopfield network ............................................................... 352 12.4.3 Boltzmann machine ........................................................... 354 12.4.4 Network of multiple interacting programs.............................. 354 12.5 Clustering with competitive networks ............................................. 356 12.6 Using neural networks to solve the TSP........................................... 358 12.7 Evolving neural networks .............................................................. 360 12.8 Summary .................................................................................... 361 XIII What Was the Length of the Rope? ....................................................... 363 13 Fuzzy Systems .................................................................................... 367 13.1 Fuzzy sets ................................................................................... 13.2 Fuzzy sets and probability measures .............................................. 13.3 Fuzzy set operations ..................................................................... 13.4 Fuzzy relationships ...................................................................... 13.5 Designing a fuzzy controller .......................................................... 13.6 Fuzzy clustering .......................................................................... 13.7 Fuzzy neural networks ................................................................. 13.8 A fuzzy TSP.................................................................................. 13.9 Evolving fuzzy systems ................................................................. 368 368 369 372 375 380 382 385 387 Table of Contents I 13.10 Summary ................................................................................. 388 XIV Everything Depends on Something Else ............................................... 389 14 Coevolutionary Systems ...................................................................... 397 14.1 Playing a game ........................................................................... 399 14.2 Learning to play checkers ............................................................ 400 14.3 Optimization through competing populations.................................. 403 14.4 Another example with a game ...................................................... 408 14.5 Artificial life ................................................................................ 411 14.6 Games of cooperation and competition .......................................... 412 14.7 Modeling intelligent agents ........................................................... 418 14.8 Issues in coevolution ................................................................... 420 14.9 An example of cooperative coevolution on the TSP .......................... 424 14.10 Summary ................................................................................. 430 XV Who's Taller? ..................................................................................... 431 15 Multicriteria Decision-Making .............................................................. 15.1 Single numeric approach ............................................................. 15.1.1 The Valuated State Space approach .................................... 15.1.2 Fuzzy multicriteria decision-making ................................... 15.1.3 Summary ........................................................................ 15.2 Evolutionary multiobjective optimization approach ......................... 15.2.1 Brief history ..................................................................... 15.2.2 Evolutionary algorithm for multiobjective NLP ...................... 15.3 Summary ................................................................................... 435 440 443 449 450 451 452 458 462 XVI Do You Like Simple Solutions? ........................................................... 465 16 Hybrid Systems .................................................................................. 471 16.1 Summary ................................................................................... 480 17 Summary .......................................................................................... 483 Appendix A: Probability and Statistics ....................................................... A.1 Basic concepts of probability .......................................................... A.2 Random variables ......................................................................... A.2.1 Discrete random variables ................................................... A.2.2 Continuous random variables .............................................. A.3 Descriptive statistics of random variables ........................................ A.4 Limit theorems and inequalities ..................................................... A.5 Adding random variables ............................................................... A.6 Generating random numbers on a computer ................................... A.7 Estimation ................................................................................... A.8 Statistical hypothesis testing .......................................................... A.9 Linear regression .......................................................................... 495 495 497 497 500 502 505 506 507 508 511 512 XVIII Table of Contents A.10 Summary .................................................................................. 514 Appendix B: Problems and Projects ........................................................ 515 B.1 Trying some practical problems ................................................... 517 B.2 Reporting computational experiments with heuristic methods . .... 522 References .............................................................................................. 525 Index ...................................................................................................... 551
There are no comments for this item.