Normal view MARC view

Modern linear and nonlinear econometrics

Author: Plasmans, Joseph Series: Dynamic modeling and econometrics in economics and finance Publisher: Springer, 2006.Language: EnglishDescription: 382 p. ; 24 cm.ISBN: 0387257608Type of document: BookBibliography/Index: Includes bibliographical references and index
Tags: No tags from this library for this title. Log in to add tags.
Item type Current location Collection Call number Status Date due Barcode Item holds
Book Europe Campus
Main Collection
Print HB139 .P53 2006
(Browse shelf)
001173529
Available 001173529
Total holds: 0

Includes bibliographical references and index

Digitized

Modern Linear and Nonlinear Econometrics Contents I Linear and Nonlinear Econometric Inference: Estimation and Testing 1 1 Estimation in Linear and Nonlinear Models 5 1.1 Introduction to linear and nonlinear optimization ............................................ 5 1.1.1 Nonlinear least squares ......................................................................... 6 1.1.2 Nonlinear maximum likelihood ............................................................. 7 1.2 Econometric methods of nonlinear estimation ............................................... 10 1.2.1 Gauss method ...................................................................................... 10 1.2.2 Method of scoring ............................................................................... 13 1.2.3 Quasi-Gauss method ........................................................................... 13 1.2.4 Marquardt method ............................................................................... 14 1.2.5 Quadratic hill-climbing method .......................................................... 14 1.2.6 Concluding remarks ............................................................................ 14 2 Generalized Method of Moments 19 2.1 Endogeneity bias: two examples ...................................................................... 19 2.2 The method of moments ................................................................................... 21 2.2.1 Some examples .................................................................................... 22 2.2.2 MoM encompasses many estimation methods .................................... 23 2.3 Generalized method of moments ..................................................................... 27 2.3.1 Example: GMM estimators based on Euler equations . ...................... 28 2.3.2 Three empirical examples ................................................................... 30 2.3.3 Exercises .............................................................................................. 31 2.4 Some concluding remarks ................................................................................ 32 3 Testing in Linear and Nonlinear Models 33 3.1 Nested model tests ............................................................................................ 34 3.1.1 Lagrange multiplier test ...................................................................... 34 3.1.2 Wald test .............................................................................................. 35 3.1.3 Likelihood ratio test ............................................................................ 35 3.1.4 Confidence intervals and hypotheses tests .......................................... 36 3.1.5 Recapitulating and extending nested hypotheses ................................ 38 3.1.6 Examples of nested model tests .......................................................... 39 3.2 Nonnested model tests ...................................................................................... 47 ix x CONTENTS 3.2.1 Cox test for two different linear models ....................................... 48 3.2.2 Cox test for two different nonlinear models ................................ 50 3.3 Theoretical and empirical exercises ........................................................... 53 II Time Series Analysis 4 A Typology of Dynamic Models 4.1 Autoregressive distributed lag models ....................................................... 4.2 The partial adjustment model ...................................................................... 4.3 The error correction mechanism ................................................................. 55 59 59 60 63 5 Univariate ARIMA Models 65 5.1 Stationary processes ..................................................................................... 66 5.2 Autoregressive (time series) processes ...................................................... 68 5.2.1 Stationary autoregressive processes .............................................. 68 5.2.2 Estimation and identification of AR processes ............................ 69 5.3 Moving average (time series) processes .................................................... 72 5.3.1 Definition ......................................................................................... 73 5.3.2 Identification of an MA process .................................................... 74 5.3.3 Parameter estimation of an MA(q) process ................................. 75 5.4 ARMA models .............................................................................................. 75 5.4.1 Stationarity restrictions .................................................................. 75 5.4.2 The ARMA (1,1) model ................................................................ 76 5.5 Testing for unit roots .................................................................................... 79 5.5.1 Testing for unit roots in a first order autoregressive model 79 5.5.2 Testing for unit roots in higher order AR models ....................... 83 5.5.3 Multiple unit roots ........................................................................... 85 5.5.4 Seasonal unit roots .......................................................................... 88 5.6 ARIMA models ............................................................................................. 89 5.7 Box-Jenkins approach for ARIMA models................................................ 90 5.7.1 Identification of a tentative time series model ............................ 90 5.7.2 Estimation of a time series model.................................................. 91 5.7.3 Diagnostic Checking ....................................................................... 94 5.8 Time series with aberrant observations ..................................................... 98 5.8.1 Definition and problems ................................................................. 98 5.8.2 Testing for and dealing with aberrant observations . . . ........... 101 5.8.3 Detecting and estimating aberrant observations ........................ 103 5.9 Forecasting of ARIMA models ................................................................ 104 5.9.1 Forecasting AR processes 105 5.9.2 Forecasting MA processes ........................................................... 108 5.9.3 Forecasting ARMA processes ..................................................... 109 5.9.4 Forecasting an ARIMA process .................................................. 111 5.9.5 Ad hoc forecasting methods ....................................................... 113 5.9.6 Forecasts with density functions ................................................. 117 5.10 Cases and exercises about ARIMA models .......................................... 121 CONTENTS 5.10.1 5.10.2 5.10.3 5.10.4 x i Theoretical exercises ................................................................. 121 Solved (empirical) cases ............................................................ 129 Empirical exercises .................................................................... 148 Unsolved cases ............................................................................ 151 153 153 153 154 156 157 157 159 161 165 166 166 170 178 181 181 185 186 187 188 188 189 191 191 6 Cointegration and Transfer Functions 6.1 Cointegration ............................................................................................ 6.1.1 A simple example ......................................................................... 6.1.2 Definition and properties ............................................................. 6 . 2 Causality ................................................................................................... 6.3 Transfer function modeling ...................................................................... 6.3.1 Single output single input models .............................................. 6.3.2 Intervention analysis .................................................................... 6.3.3 Theoretical and empirical examples and exercises .................. 7 Multivariate Time Series 7.1 Vector autoregressive models .................................................................. 7.1.1 A simple bivariate VAR(1) ........................................................... 7.1.2 V AR(p) models ............................................................................. 7.1.3 Structural VAR models ................................................................. 7.2 V ARM models ........................................................................................... 7.2.1 Multivariate cointegration ........................................................... 7.2.2 Multivariate causality .................................................................. 7.2.3 Dynamic simultaneous equations models .................................. 7.2.4 D S E M s and SVARs ..................................................................... 7.3 Exercises and cases ................................................................................... 7.3.1 Solved theoretical exercises ........................................................ 7.3.2 Solved empirical exercise ............................................................ 7.3.3 Solved empirical cases ................................................................. 7.3.4 Unsolved exercises ....................................................................... 8 Varying Parameter Models 193 8.1 Regime switching models ............................................................................ 193 8.1.1 Specification and estimation of regime switching models based on observables ................................................................ 194 8.1.2 Specification and estimation of regime switching models based on unobservables ............................................................ 195 8.1.3 Solved empirical case for regime switching models . . . . 198 8.2 Volatility modeling .................................................................................... 199 8.2.1 Univariate A R C H models ................................................... 203 8.2.2 The symmetric LARCH class of models ..................................... 204 8.2.3 Other functional forms of GARCH models ................................ 216 8.2.4 Multivariate GARCH processes ................................................... 221 8.2.5 Exercises and cases ...................................................................... 229 xii CONTENTS III Categorical and Limited Dependent Variables 237 9 Discrete Choice Models 241 9.1 Binary choice models ................................................................................. 241 9.1.1 Regression approach ..................................................................... 242 9.1.2 Repeated observations for discrete choice ................................. 243 9.1.3 Marginal effects (or `slopes') ....................................................... 245 9.1.4 Forecasts ......................................................................................... 246 9.1.5 No repeated observations ............................................................. 246 9.1.6 Index function models: latent variables representation . .......... 247 9.2 Multiple response models .......................................................................... 248 9.2.1 Ordered response models ............................................................. 248 9.2.2 Multinomial models ...................................................................... 249 9.3 Cases and exercises .................................................................................... 251 9.3.1 Solved cases ................................................................................... 251 9.3.2 Exercises ........................................................................................ 255 10 Limited Responses, Duration and Count Data 257 10.1 Censoring and truncation ......................................................................... 257 10.1.1 Problems raised by censoring .................................................... 257 10.1.2 Tobit models for censoring......................................................... 258 10.2 Models for duration data ......................................................................... 259 10.2.1 Parametric models of duration .................................................. 260 10.3 Count data ................................................................................................. 262 10.3.1 Poisson model .............................................................................. 263 10.3.2 Negative binomial model ............................................................ 265 10.3.3 Zero-inflated count models ........................................................ 265 10.4 Exercises .................................................................................................... 266 IV Panel Data Analysis 267 11 Linear Panel Data Models 271 11.1 Panel data models with constant coefficients ....................................... 273 11.2 Intercepts varying over individuals ........................................................ 274 11.2.1 pi fixed ........................................................................................... 275 11.2.2 µi random ....................................................................................... 278 11.2.3 Testing for random effects ......................................................... 282 11.2.4 Random effects versus fixed effects ......................................... 283 11.3 Intercepts varying over individuals and time ........................................ 284 11.3.1 µi and At fixed: dummy variables model .................................... 285 11.3.2 µi and At random: error components model ............................... 286 11.3.3 Specification tests ....................................................................... 288 11.3.4 Fixed or random effects? ............................................................ 288 11.4 All coefficients varying over individuals .............................................. 289 11.4.1 ßk, fixed: SUR .............................................................................. 289 CONTENTS xiii 11.4.2 ß k i random: Swamy's random coefficient model ..................... 293 11.5 All coefficients vary over individuals and time ................................... 295 11.5.1 Fixed coefficients ........................................................................ 296 11.5.2 Stochastic coefficients: Hsiao's model ....................................... 296 11.6 Advantages of panel data reconsidered ................................................ 297 11.7 Incomplete panels and selection bias .................................................... 300 11.7.1 Incomplete panels ........................................................................ 301 11.7.2 Attrition and selection bias ......................................................... 302 11.8 Dynamic linear panel data models ......................................................... 303 11.9 Empirical cases and exercises ................................................................ 309 11.9.1 Case 1. Investment and market value of firms ......................... 309 11.9.2 Case 2. Money flows and the performance of hedge funds 315 11.9.3 Exercises ....................................................................................... 319 12 Nonlinear Panel Data Models 321 12.1 FE estimation for logit and probit ......................................................... 321 12.1.1 Logit models and conditional MLE ........................................... 321 12.1.2 FEs in probit models and a semiparametric estimator . . 323 12.2 RE estimation ............................................................................................ 324 12.2.1 ML estimation .............................................................................. 324 12.3 Panel count data models ....................................................................... . 325 12.3.1 Fixed Effects Poisson models .................................................... 325 12.3.2 Random Effects Poisson models ................................................. 325 12.4 Cases and exercises ................................................................................. 326 12.4.1 Case 1. Firms' decision to report their RandD expenditures 326 12.4.2 Case 2. Count data model for patents-RandD relationship . 328 12.4.3 Exercise ........................................................................................ 328 A Nonlinear Optimization and Estimation A.1 General nonlinear optimization problem ............................................... A.2 Gradient methods of nonlinear estimation ............................................. A.2.1 Steepest descent ............................................................................ A.2.2 Newton (-Raphson) ....................................................................... A.2.3 Quasi-Newton procedures ............................................................ A.3 Constrained nonlinear optimization methods ........................................ A.3.1 Reparameterization ....................................................................... A.3.2 Transformation of the objective function .................................. A.3.3 Dual methods ................................................................................. A.3.4 Extended (augmented) Lagrange function method . . . ............ B Mathematical Formulation of GMM B.1 Redefining GMM ...................................................................................... B.2 Assumptions and properties ..................................................................... B.3 Nonlinear two stage least squares ........................................................... C Stability Criteria for AR(p) Models 333 333 334 335 338 339 343 343 344 345 345 349 349 350 351 353 xiv CONTENTS 355 D MLE of the RSM with Endogenous Prices E Volatility Modeling 359 E.1 Detection and reduction of additive outliers ................................................... 359 E.2 Forecasting in G ARC H(p, q) models ............................................................. 360 E.3 Generalized exponential distribution 360 E.4 Generalized Student t-distribution .................................................................. 361 E.5 Aggregation of GAR CH processes ................................................................. 361

There are no comments for this item.

Log in to your account to post a comment.
Koha 18.11 - INSEAD Catalogue
Home | Contact Us | What's Koha?